

 Navigation

 	
 index

 	
 next |

 	Bipartite Configuration Model 1.0 documentation

Bipartite Configuration Model - Documentation

The Bipartite Configuration Model (BiCM) is a statistical null model for binary
bipartite networks [Squartini2011] [Saracco2015]. It offers an unbiased method of analyzing node
similarities and obtaining statistically validated monopartite projections
[Saracco2016].

The BiCM belongs to a series of entropy-based null model for binary biparite
networks, see also

	BiPCM [https://github.com/tsakim/bipcm]

	BiRG [https://github.com/tsakim/birg]

Please consult the original articles for details about the underlying methods
and applications to user-movie and international trade databases
[Saracco2016], [Straka2016].

An example case is illustrated in the Tutorial.

How to cite

If you use the bicm module, please cite the its location on Github [https://github.com/tsakim/bicm] and the original articles [Saracco2015] and
[Saracco2016].

References

	[Saracco2015]	(1, 2) F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade Web, Scientific Reports 5, 10595 (2015) [http://www.nature.com/articles/srep10595]

	[Saracco2016]	(1, 2, 3) F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli, T. Squartini, Inferring monopartite projections of bipartite networks: an entropy-based approach, arXiv preprint arXiv:1607.02481 [https://arxiv.org/abs/1607.02481]

	[Squartini2011]	T. Squartini, D. Garlaschelli, Analytical maximum-likelihood method to detect patterns in real networks, New Journal of Physics 13, (2011) [http://iopscience.iop.org/article/10.1088/1367-2630/13/8/083001]

	[Straka2016]	M. J. Straka, F. Saracco, G. Caldarelli, Product Similarities in International Trade from Entropy-based Null Models, Complex Networks 2016, 130-132 (11 2016), ISBN 978-2-9557050-1-8 [http://www.complexnetworks.org/BookOfAbstractCNA16.pdf]

Getting Started

	Overview
	Dependencies

	BiCM Quickstart
	Obtaining the biadjacency matrix of the BiCM null model

	Calculating the p-values of the node similarities

	Tutorial

	Testing

	Parallel Computation

	API

	License

	Contact

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bipartite Configuration Model 1.0 documentation

Overview

The bicm module is an implementation of the Bipartite Configuration Model
(BiCM) as described in the article [Saracco2016]. The BiCM can be used as a
statistical null model to analyze the similarity of nodes in undirected
bipartite networks. The similarity criterion is based on the number of common
neighbors of nodes, which is expressed in terms of \(\Lambda\)-motifs in
the original article [Saracco2016]. Subsequently, one can obtain
unbiased statistically validated monopartite projections of the original bipartite
network.

The construction of the BiCM, just like the related BiPCM [https://github.com/tsakim/bipcm] and BiRG [https://github.com/tsakim/birg] models, is based on the generation of a
grandcanonical ensemble of bipartite graphs subject to certain constraints. The
constraints can be of different types. For instance, in the case of the BiCM
the average degrees of the nodes of the input network are fixed. In the BiRG,
on the other hand, the total number of edges is constrained.

The average graph of the ensemble can be calculated analytically using the
entropy-maximization principle and provides a statistical null model, which can
be used for establishing statistically significant node similarities. In
general, they are referred to as entropy-based null models. For more
information and a detailed explanation of the underlying methods, please refer
to [Saracco2016].

By using the bicm module, the user can obtain the BiCM null model which
corresponds to the input matrix representing an undirected bipartite network.
To address the question of node similarity, the p-values of the observed
numbers of common neighbors can be calculated and used for statistical
verification. For an illustration and further details, please refer to
[Saracco2016] and [Straka2016].

Dependencies

bicm is written in Python 2.7 and uses the following modules:

	poibin [https://github.com/tsakim/poibin] Module for the Poisson Binomial
probability distribution

	scipy [https://www.scipy.org/]

	numpy

	multiprocessing [https://docs.python.org/2/library/multiprocessing.html]

	ctypes [https://docs.python.org/2/library/ctypes.html]

	doctest [https://docs.python.org/2/library/doctest.html] For unit testing

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bipartite Configuration Model 1.0 documentation

BiCM Quickstart

If you want to get started right away, go ahead and follow the summary below. The bicm module encompasses essentially two steps for the analysis of node similarities in bipartite networks:

	given an input matrix, create the biadjacency matrix of the BiCM null model

	perform a statistical validation of the similarities of nodes in the same
layer

The validated node similarities can be used to obtain an unbiased monopartite projection of the bipartite network, as illustrated in [Saracco2016].

For more detailed explanations of the methods, please refer to [Saracco2016], the Tutorial and the API.

Obtaining the biadjacency matrix of the BiCM null model

Be mat a two-dimensional binary NumPy array, which describes the
biadjacency matrix [https://en.wikipedia.org/w/index.php?title=Adjacency_matrix&oldid=751840428#Adjacency_matrix_of_a_bipartite_graph]
of an undirected bipartite network. The nodes of the two bipartite layers are
ordered along the columns and rows, respectively. In the algorithm, the two
layers are identified by the boolean values True for the row-nodes and
False for the column-nodes.

Import the module and initialize the Bipartite Configuration Model:

>>> from src.bicm import BiCM
>>> cm = BiCM(bin_mat=mat)

To create the biadjacency matrix of the BiCM, use:

>>> cm.make_bicm()

The biadjacency matrix of the BiCM null model can be saved in <filename>:

>>> cm.save_matrix(cm.adj_matrix, filename=<filename>, delim='\t')

By default, the file is saved in a human-readable CSV format. The information can also be saved as a binary NumPy file .npy by using:

>>> cm.save_matrix(cm.adj_matrix, filename=<filename>, binary=True)

Calculating the p-values of the node similarities

In order to analyze the similarity of the row-layer nodes and to save the
p-values of the corresponding \(\Lambda\)-motifs, i.e. of the number of
shared neighbors [Saracco2016], use:

>>> cm.lambda_motifs(True, filename='p_values_True.csv', delim='\t')

For the column-layer nodes, use:

>>> cm.lambda_motifs(False, filename='p_values_False.csv', delim='\t')

Subsequently, the p-values can be used to perform a multiple hypotheses testing
and to obtain statistically validated monopartite projections [Saracco2016].
The p-values are calculated in parallel by default, see Parallel Computation for
details.

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bipartite Configuration Model 1.0 documentation

Tutorial

The tutorial will take you step by step from the biadjacency matrix of a
real-data network to the calculation of the p-values. Our example bipartite
network will be the following:

[image: ../_images/nw.png]
The structure of the network can be caught in the biadjacency matrix [https://en.wikipedia.org/w/index.php?title=Adjacency_matrix&oldid=751840428#Adjacency_matrix_of_a_bipartite_graph].
In our case, the matrix is

\[\begin{split}\left[
\begin{matrix}
 1 & 1 & 0 & 0 \\
 0 & 1 & 1 & 1 \\
 0 & 1 & 0 & 1
\end{matrix}
\right]\end{split}\]

Note that the nodes of the layers of the bipartite network are ordered along
the rows and the columns, respectively. In the algorithms, the two layers are
identified by the boolean values True for the row-nodes and False for
the column-nodes. In our example image, the row-nodes are colored in blue
(top layer) and the column-nodes in red (bottom layer).

Let’s get started by importing the necessary modules:

>>> import numpy
>>> from src.bicm import BiCM

The biadjacency matrix of our toy network will be saved in the two-dimensional
NumPy array mat:

>>> mat = np.array([[1, 1, 0, 0],
 [0, 1, 1, 1],
 [0, 1, 0, 1]])

and we initialize the Bipartite Configuration Model with:

>>> cm = BiCM(bin_mat=mat)

In order to obtain the biadjacency matrix of the BiCM null model corresponding
to the input network, a number of equations have to be solved. However, this is
done automatically by running:

>>> cm.make_bicm()

You can now save the bidajacency matrix in the file <filename> as:

>>> m.save_biadjacency(filename=<filename>, delim='\t')

Note that the default delimiter is \t. Other delimiters such as , or
; work fine as well. The matrix can either be saved as a human-readable
.csv or as a binary NumPy .npy file, see save_biadjacency() in
the API. In our example graph, the BiCM matrix should be:

>>> cm.adj_matrix
>>> array([[0.21602144, 0.99855239, 0.21602144, 0.56873952],
 [0.56845256, 0.99969684, 0.56845256, 0.86309703],
 [0.21602144, 0.99855239, 0.21602144, 0.56873952]])

Each entry in the matrix corresponds to the probability of observing a link
between the corresponding row- and column-nodes. If we take two nodes in the
same layer, we can count the number of common neighbors that they share in the
original input network and calculate the probability of observing the same of
more common neighbors according to the BiCM [Saracco2016]. This corresponds to
calculating the p-values for a right-sided hypothesis testing.

The calculation of the p-values is computation and memory intensive and should
be performed in parallel, see Parallel Computation for details. It can be executed
by simply running:

>>> cm.lambda_motifs(<bool>, filename=<filename>, delim='\t')

where <bool> is either True of False depending on whether one wants
to address the similarities of the row- or column-nodes, respectively,
and <filename> is the name of the output file.

Having calculated the p-values, it is possible to perform a multiple hypothesis
testing with FDR control and to obtain an unbiased monopartite projection of
the original bipartite network. In the projection, only statistically
significant edges are kept.

For further information on the post-processing and the monopartite projections,
please refer to [Saracco2016].

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bipartite Configuration Model 1.0 documentation

Testing

The methods in the bicm module have been implemented using doctests [https://docs.python.org/2/library/doctest.html]. To run the tests,
execute:

>>> python -m doctest bicm_tests.txt

from the folder src in the command line. If you want to run the tests in
verbose mode, use:

>>> python -m doctest -v bicm_tests.txt

Note that bicm.py and bicm_tests.txt have to be in the same directory to
run the test.

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bipartite Configuration Model 1.0 documentation

Parallel Computation

Since the calculation of the p-values is computationally demanding, the
bicm module uses the Python multiprocessing [https://docs.python.org/2/library/multiprocessing.html] package by default
for this purpose. The number of parallel processes depends on the number of
CPUs of the work station (see variable numprocs in the method
BiCM.get_pvalues_q() in the API).

If the calculation should not be performed in parallel, use:

>>> cm.lambda_motifs(<bool>, parallel=False)

instead of:

>>> cm.lambda_motifs(<bool>)

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bipartite Configuration Model 1.0 documentation

API

API for the methods in the bicm module.

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bipartite Configuration Model 1.0 documentation

License

MIT License

Copyright (c) 2015-2016 Mika J. Straka

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Bipartite Configuration Model 1.0 documentation

Contact

For questions or input, please write to mika.straka@imtlucca.it.

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Bipartite Configuration Model 1.0 documentation

Index

 Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/minus.png

_images/nw.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Bipartite Configuration Model 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Mika J. Straka.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

